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ABSTRACT

We present a statistical approach to object tracking which allows
for paths to merge together or split apart. Paths are also allowed to
be born, die, and go undetected for several frames. The splitting
and merging of paths is a novel addition for a statistically-based
tracking algorithm. This addition is essential for storm tracking,
which is the motivation for this work. The utility of this tracker
extends well beyond the tracking of storms however. It can be
valuable in other tracking applications that have splitting or merg-
ing, such as vortices, radar/sonar signals, or groups of people. The
method assumes that the location of an object behaves like a Gaus-
sian Process when it is observable. Objects are required to be born,
die, split, or merge according to a Markov State Model. Path cor-
respondence is achieved by an algorithm that finds the paths that
maximize the likelihood of the assumed model.

1. INTRODUCTION

The problem of object tracking has many different names, includ-
ing the correspondence problem, motion correspondence, feature
point tracking, and data association among others. It has applica-
tions in radar and signal processing, air traffic control, robot vi-
sion, GPS-based navigation, and biomedical engineering, to name
a few. The approach developed in this paper is motivated by the
need to track turbulence structures.

1.1. Description of the Tracking Problem

The basic premise of the object tracking problem is that we wish
to follow objects of interest through a sequence of images. To
illustrate the idea further, assume there are M objects at each time
step (we are ignoring birth and death of the objects for now) as
in Figure 1. The objects in the figure are labeled accoring to time
so that time is distinguishable when all times are included in the
plots at the bottom of the figure. The objects are free to move
and change attributes from one time step (image) to the next. The
purpose of the tracking algorithm is to determine which temporal
set of locations corresponds to one particular object.

Tracking algorithms are dependent on an identification algo-
rithm. The identification algorithm will go through each image
and record the location of each object that it finds. In some cases,
such as in ours, it may record other information about the object
as well, such as size or shape.
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Fig. 1. A tracking problem with no birth or death.

The goal of the tracking algorithm then is to take this location
and time data and assign labels to every object found by the iden-
tification algorithm in each image. In the end, we wish to recover
the path of each object; that is, the history of the (x,y) coordinates
of each object.

Of course, it isn’t quite this easy in real life. Most applications
will not have the same number of objects in each image. Imper-
fect detection and occlusion will lead to missing objects in some
images. There can also be spurious observations or false alarms
(often called clutter). In addition, some objects may appear for
the first time or disappear for good in the middle of the image se-
quence. These events, which we will call birth and death, can hap-
pen when an object moves into or out of the field of vision. In the
case of storm tracking, the objects can actually form or disappear
right in the middle of the field of vision. In the case of turbulence,
like-spinning structures often merge together.

1.2. Two Scientific Problems

This subsection describes two scientific problems for which the
tracking of objects is an important step to their solutions. The first
problem concerns the study of the evolution of storm/rainfall sys-
tems captured by satellite radar imaging techniques; see Figure 2.
The very short term behavior (less than 1 hour) of such systems
are reasonably well-known, but the short term (1 to 6 hours) and
long term (1 to 2 days) behaviors are still largely unknown. It is
definitely desirable if such longer term behaviors are better un-
derstood, and a useful tool that would help in this direction is a
procedure that automatically monitors the movements and the in-
teractions (e.g., merging and splitting) of all the structures in the
overall full system. The second motivating problem focuses on
a particular type of simulated image sequences of freely decay-
ing vortices; see Figure 3. Recently such image sequences are
a subject of much research [1, 8, 10], as it is (i) a paradigm for
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Fig. 2. Radar images of storm/rainfall.
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Fig. 3. Simulated images of freely decaying vortices.

anisotropic geophysical and astrophysical turbulence, and (ii) it is
also the most computationally accessible example of fluid turbu-
lence. Automatic tracking of such vortices is a first step to the
understanding of the interactions amongst these structures.

A common characteristic to these two tracking problems is
that the objects of interests exhibit merging, and for the former
problem, the objects also exhibit splitting. Thus many existing
tracking methods that do not allow merging or splitting (e.g., [4, 5,
7, 9]) can not be applied. Other methods that do attempt to incor-
perate merging and splitting such as [2, 3, 6] are ad-hoc as they do
not take advantage of the power that comes from using a statistical
model. In Section 2 we present a novel statistical tracking model
that is designed to handle merging and splitting. One attractive
property of this model is that its likelihood function can be quickly
and accurately approximated; this is described in Section 3 below.
In Section 4 we present some simulated results, while future work
is discussed in Section 5.

2. A STATISTICAL MODEL

Define a path to be {[X(t), Y (¢)] : ¢ > 0}, which is the z,y co-
ordinates of an object at all times ¢ > 0. We observe the path at
discrete times T'= (70, T4, ..., ). We wish to model the path
of an object (for example a storm) by a 2 dimensional Integrated
Brownian Motion. The problem is that we may not observe the
process if we look at time ¢ for several reasons: (1) It may not
be found by our detection procedure, (2) it no longer exists, (3) it
merged with another path, (4) it split off into 2 new paths, or (5) it
may not yet exist. In addition, there may be spurious paths (false
alarms) found by the detection algorithm. In the following, we
present a model for the objects which takes all of these things into
account. The proposed solution of the tracking problem is then the
set of paths that maximize the likelihood of this model.

2.1. State Model

The State Model is a continuous time Markov chain that deter-
mines when paths comes into existence and terminate. Paths can
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either be born, die, split into two paths, or merge with another path.
The rate at which these events happen are A1, N(£)A2, N(t)As,
and (N ét)) A4 respectively, where N (t) is the number of paths in
existence at time ¢.

This process also allows for false alarm paths to be born and
die. A false alarm does not interact with the true paths or other
false alarms at all (no merging or splitting). False alarms will be
born with rate p1 and die with rate Ny (¢)p2 where Ny (t) is the
number of false alarms in existence at time ¢. The initial number of
paths and false alarms, N (0) and N (0) are assumed to be Poisson
distributed with rates Ag and po respectively.

The following notation will be used to describe the states of
each path. Let each path that will exist before the last image at time
T, be indexed by ¢« = 1,..., M. Let p; denote the two parents
of the i'" path. If path 4 results from a birth, then p; = (0,0)
represents that it has no parents. For a path resulting from a split
of path k, p; = (k,0). If i is a path resulting from a merger of
paths k and [, then p;, = (k,l). Finally, let p; (=1,-1) to
represent a false alarm.

Now let &; denote the initiation time of path ¢ and (; the time
of termination. So the collection of p = (p1,...,pm), &
(&1,...,ém) and ¢ = (Cay ..., Cmr) contains all of the informa-
tion in the State Model.

2.2. Missing State Model

We now deal with the problem where a path exists but is not ob-
servable for some reason. This behavior will be modelled with
another continuous time Markov Chain with state variable W ()
that simply takes on the values O if missing and 1 if observable.
When missing, the path becomes observable with rate vy and when
observable, the path becomes missing with rate v .

Let W;(t) denote the missing state variable of the i*" path at
time ¢. Let W;(t) = 0 for the 5** path until it is initiated. As
soon as path i is initiated, the value of W;(¢&;) is determined by
the steady state probabilities of the chain. As soon as path ¢ is
terminated by the State Model, W;(¢) becomes 0 again for ¢ > (;.

False alarm paths are assumed to always be observable when
they exist. So we can assume vg 1 and v1 = 0 for example.
This will ensure that a false alarm is never missing when it exists.

2.3. Object Size

The minor and major axes, R; and R» respectively, of the best fit-
ting ellipse to each object will also be in the model (Figure 4). The
best fitting ellipse is determined by standard imaging techniques.
We can also define the size to be S = R1 R».
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Let Ry ,i(t) and Ry i(t) be the radii of the minor and major
axes respectively of path ¢ at time ¢. Ry ;(t) and Ry ;(t) will be
treated as random variables from a lognormal distribution with pa-
rameters (pg, ;. 0%, ;) and (,uRQ’i,afzzﬂ.). These observations
are assumed to be independent over time.

Since R1,i(t) and Ry ;(t) are lognormal, S;(t) is also lognor-
mal with parameters (ur, i + fRs,is Ok, .i + Oh,.;). In the event
of a split, the mean sizes of the two new objects are required to
sum to the mean size of the parent object. If ES; is the mean
size of the 3" path which splits into paths j and k, then we have
ES; = ES; 4+ ES. In the event of a merger, the same conserva-
tion of mean size rule will apply.

In reality, we only observe the order statistics R(1y(t) = Ri(¢)A

Ry (t) and R(»)(t) = Ri(t) V Rz(t). Thus it is the likelihood of
R(1) and Ry that needs to be calculated in Section 3.

2.4. Object Orientation

The orientation of an object will be measured by the angle, 6(t)
of the major axis, R»(t) at time ¢ as shown in Figure 4. We will
use the usual notation 6;(t) to represent the angle for the it" path.
We will assume that 6; (#) comes from a VonMises distribution on
[0, 7] with parameters «; and 3; and iid over time.

Since R (t) is unobservable, neither is 8(t). We do observe
the angle of R()(t) which we will call 8'(t). The likelihood for
6’ will be given in Section 3.

2.5. Object Location

Let the z-coordinate of the i*" path at time ¢ be denoted by X; (t).
The distribution of X;(¢) will be defined below. Therefore Y;(t)
will be the same with the obvious changes in notation and inde-
pendent of X; (). Suppose that the it" path resulted from a birth.
Then,

Xi(t) = Xi(&) + Xi(&)(t — &) +0:Zi(t — &), (D)

where X (t) is the velocity of the path at time ¢ and Z;(t) is In-
tegrated Brownian Motion given by, Z;(t) = fg B;(s)ds, where
B;(t) is the Brownian Motion driving the i** path. Also recall
that &; is the time of initiation of path 7. It is assumed that the
initial position and velocity are Gaussian. Specifically, X;(&;) ~
N(pxo, 0%,) and X1(€:) ~ N(jixy, 0%, )-

For a path resulting from a split,

Xi(t) = Xp, o (&) +oit [X;“ &)+ ¢§} (t—&)+oiZi(t—&),

@3]
where ¢; ~ N(0,0%,) and ¢; ~ N(0,0% ). Notice that the
initial position and velocity of the new path aré the same as that of
the parent path plus some error. It is assumed that ag(s is small so
that the new paths appear close to where the parent split. There will
also be something like a conservation of momentum assumption
imposed on the two new paths splitting off of the parent. This is
achieved by the following.

Let ¢; be a vector containing the three paths involved in the 7**
splitting event, ¢ = 1,..., Ny, where N, is the number of splits
before time T5,. The index of the parent path is ¢;,1 where ¢; 2 and
¢;,3 are the children. The change in momentum after the split is

Ci = ESCi,QXéi,z(gci,Q) +ESCi,3Xéi73(£Ci,2)
7ESC1‘,1X¢,?Z',1 (&%‘,2)' (3)

We will then condition the model for X on the events C; = 0
fors = 1,...,Ns. This will ensure that there is no change in
momentum.

For a path resulting from a merging,

ES,,, ES,,
Xi(t) = — 2t Xp, (&) + —o2 Xp, o (6)+ (€]

ES; ES;
ES,, ESy,;.
Egi,lX;i’l(&)-i- EgiQX;"'z(&) (t—=&)+oiZi(t—&).

Ensuring that the two parent paths get close together before merger
will be accomplished in a similar manner to the conservation of
momentum for splitting.

Let d; be a vector containing the three paths involved in the
ith merger, ¢ = 1,..., Ny, where N, is the number of mergers
before time T’,. The indices of the parent paths are d;,1 and d; 2,
where d; 3 is the index of the child. The difference in location
between the two parents at the time of merger plus a small error is
given by

D; = Xdi,l (5(112) - Xdi,2 (gdi‘.‘%) + i, (6)

where 1; ~ N(0,0%. ). We will then condition the model for X
onthe event D; = 0 foriv = 1,..., N,,. If ox,, is small, it will
force the two parent paths close together right before the merger.

Lastly in the case that the " path is a false alarm, we assume
a Brownian Motion model,

Xi(t) = X (&) +aiBi(t — &). @)

3. MODEL LIKELIHOOD

In this Section we will present the likelihood of the model de-
scribed in Section 2. We wish to write out the density, for the col-
lection of random variables, ® = (p, &, ¢{, W, X, Y, R(1), R(5),0'),
where the bold variables denote the collection of values for all
paths at all times. Using the property fxy = fx fy|x, we can
write this density

fo(9) = fpe ¢ WX Y R, R 0
=Ipec fwpec Ixipecw Tyipecw:
IR, Ry p& (W T0'pe ¢ WR, Ryyw ©

since X, Y, and (R(1), R()) are independent given (p, &, ¢, W).
Also @' is independent of X and Y given (p &, ¢, W, R1). R(2)).
‘We will call the conditional densities in (8), in order from left to
right, the state density, missing state density, X density, Y density,
radius density, and angle density respectively.

3.1. State Density

The state variables p, €, and ¢, represent the state model in a con-
venient form, but the density for these variables is very difficult to
write out. We will therefore represent the state model with some
equivalent variables for the purpose of writing out a likelihood.

Let 7; be the time of the i*" event in the State Model, ¢ =
1,..., Ne, where N, is the number of events before time 75,. An
event is considered to be a birth, death, split, merger, false birth, or
false death. Let U; represent the it" event in the State Model, so
that U; = 1 for a birth, 2 for a death, 3 for a split, 4 for a merger, 5
for a false birth, and 6 for a false death. Let V; contain the indices
of the path(s) involved in the i*" event.
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Recall that N(0) and N;(0) are the initial number of true
paths and false alarms respectively. So 7 = (71,...,7n.), U =
(Ur,...,Un.), V = (V1,...,Vn,), N(0), and N;(0) are an
equivalent set of variables to describe the state model, in the sense
that there is a 1-1 transformation from these variables to (p &, €).

We do not actually get to observe these states from the data.
Determining the correct states (which path merged with which
etc.), is part of finding the paths that maximize the likelihood.

Now, returning to the density of the State Model, using prop-
erties of conditional probability, we have

-fN(O),Nf UVt = fN(O)fo (O)fU,V,T\N(O),Nf (0) &)
where N (0) and Ny (0) are Poisson with parameters Ao and po, so

Ake=o
k!

k_,—po
e
Iy (k) = P, 10)

froy (k) =

Now suppose we use the convention that T4 (x) is the indica-
tor function for z € A. Also write A7 (t) = A1, A5(t) = N(f) A,
A(t) = N(DAs, Ai(1) = (Y7)An A5(8) = pr Xa(t) =
Ny(t)p2, and A*(t) = 320, A7 (t). The conditional density on
the right side of (9) can then be written

N,
. . An
_ * =N (ti—7i_1) v
fuvrino., o vt) = H{()\ ‘ 1 ) ( A )
i=1
Toay (i) | Tyay(wi) | Tyey (wi)
1 i y '
( {1,5}(71 )+ N(Tifl) + (N('ré;ﬁ) + Nf(Tifl)

an

3.2. Missing State Density

Let W; ; = W;(Tj). Since for i # j, W; is independent of W;
given the state variables and W; is Markov, we have

n

fwipec) = IT1T fw, ,ipecw, ,_,(wi)- (12

i=1j=1

Now let P; 1 (t) be the probability of W; going from state j to
state k in a time ¢ , assuming that the path exists during this time.
These transition probabilities are

_ Vi-k Vi —(votvi)t
Pj(t) = ——— + ———e¢ . 13
0 vo+v: wvotuwn 13
The stationary distribution of the chain is
. Vik
= lim Pj(t) = ——. 14
Tk tl>nolo ]’k( ) v + 11 a5

Also let AT] = Tj — T]',l.

We can then write the conditional density of W; ; on the right
side of (12) by using indicators to break it apart into the times when
the path exists and does not. In some instances we use the indicator
T4 without the argument (z). In that case use the convention that
I 4 equals 1 if the event A occurred and O otherwise:

fw, ,ip&.cwe ;o Wi) = Iiry<eny Iyry> ey Tioy (wy)+ - (19)

I{Tj71<5i}1{§i5TjS<i}7ij +I{Tj—1>5i}I{Tj<<i}PWj71-,wj (AT]')-

3.3. Radius Density

Recall that R+ (t) and R (t) are distributed as independent lognor-
mals and we observe the min and max of these which are Ry (t)
and R, (t) respectively. The density for (R)(t), R(2(t)) is
similar to that for order statistics

fR(‘l)ﬁR(Q) (Ti 5) = [.le (T)ng (S) + .le (S)ng (T)] I{TSS}- (16)

where fr, and fr, are lognormal densities as described in Sec-
tion 2.3

The density of the radii in (8) is conditional on p, £, ¢, and
W, but this density really only depends on W so we will drop the
other subscripts in the following. Since the radii of path 7 at time
Tj, (R(1),i,j> R(2),i,j ), are independent of the radii at other times
and paths ¢ and j are independent, the density in (8) can be written

M
fR(U.i'rR(Q),i\W(T’S):H [T froome. (ris:sis):

i=1{j:W; ;=1}

a7
3.4. Angle Density

The distribution of ¢ (t) given (R 1)(t), R(»)(t)) is a mixture dis-
tribution that takes the value of 6(¢) with probability v and | 6(¢) +
/2] = with probability 1 — -, where |z ], is £ mod y and

v = P(Bi(t) < Ra(t) | R (t) = r, Reny(t) = 5)

— le (T)fRQ (S) (18)

.le (T)-fRQ (S) + fR1 (S)fRz (T) .

Hence the conditional density of 6’ (t) is

for@)ray 0,82 0)(2) =V o) (2) + (L =7) for) (L2 + /2] ),

19)
where fy(;) is the VonMises density on [0, 7). As with the radii,
6; is independent over time and of other paths. Let 6; ; = 6;(T})
and we have

M

forwrayre @ =TT T1 for im0 0005 (F0)-
i=1{j:w; j=1}
(20)

3.5. Density of X

Since X;(t) is normally distributed for all ¢, the collection of lo-
cations of all paths at all observed time points, X has a multivari-
ate normal distribution, X ~ N (g, Xx). Recall in section 2.5
that we need to then condition X on C = 0 and D = 0 for
C = (Ci,...,Cn,)and D = (D»,...,Dn,,), which are also
normally distributed, C ~ N(pe,X¢), D ~ N(up,Ep). For
the collection of all three vectors we have (X, C, D) ~ N(u,X)

where pp = (px, o, )" and

Yx | Yx.c Yx.bp
' ' P A
S=|"Sex [ Z¢ Sew =( N F)
Ypx | ¥p,c b

Multivariate normal theory tells us that the distribution of X
given C =0and D = 0is N(u",X") where

po=py — AT < ZC‘ ) . Y =%x AT AL Q2D
D

The density of X conditional on C' = 0 and D = 0 is then just the
multivariate normal density with parameters, p* and X~



4. SIMULATED EXAMPLES

Here we give two simple examples to show that maximizing the
likelihood of the model described above is a reasonable way to find
the tracking solution. In Figure 5 we have two paths that merge
together, then split apart. The individual images at times 1-6 are
given on the left while some hypotheses for the complete paths are
given on the right with their corresponding log-likelihood value.
The top right image is the correct hypothesis and you can see that
it has a higher likelihood than any of the alternatives.

@ time = 1 True Paths (Like = -72.572)
® time= 2 Alternative 1 (Like = -83.929)
®
@ time= 3 Alternative 2 (Like = -85.303)
@®—\@/®\®
@ﬁ’@
@ time= 4 Alternative 3 (Like = —-87.028)
e oo
®\©
limf 5 Alternative 4 (Like = -96.952)
@—@\%
time= 6 ©<ED Alternative 5 (Like = -118.607)
. _ S

Fig. 5. A merging and splitting event with various alternative hy-
potheses

An example of a crossing event is given in Figure 6 to demon-
strate this model’s ability to distinguish between crossing and merg-
ing/splitting. Once again, the true hypothesis in the top right has
the highest likelihood.

5. CONCLUSIONS

In this paper we presented a novel statistical tracking model that
allows for object merging and splitting. Based on this model, a
practical tracking algorithm is currently being developed. The ul-
timate goal is to be able to track the objects for the storm/rainfall
and freely decaying vortex problems.
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